Iridium-Catalyzed Allylic Substitution

Iridium-Catalyzed Allylic Substitution

We have developed an iridium catalyst that forms chiral allylic amines, ethers, and carbonyl compounds in high enantiomeric excess from terminal allylic esters. Detailed mechanistic studies have shown that the catalyst forms by cyclometalation at a methyl C-H bond of the ligand and this observation has allowed the design of simplified, as well as improved catalysts. The scope of the reaction encompasses a wide range of nucleophiles. Current studies are focused on expanding the scope of allylic electrophiles and on approaches to control the diastereoselectivity of reactions that form C-C bonds from enolates.